Search results for "Neural Stem Cell"

showing 10 items of 250 documents

High resolution mouse subventricular zone stem cell niche transcriptome reveals features of lineage, anatomy, and aging

2020

AbstractAdult neural stem cells (NSC) serve as a reservoir for brain plasticity and origin for certain gliomas. Lineage tracing and genomic approaches have portrayed complex underlying heterogeneity within the major anatomical location for NSC, the subventricular zone (SVZ). To gain a comprehensive profile of NSC heterogeneity, we utilized a well validated stem/progenitor specific reporter transgene in concert with single cell RNA sequencing to achieve unbiased analysis of SVZ cells from infancy to advanced age. The magnitude and high specificity of the resulting transcriptional data sets allow precise identification of the varied cell types embedded in the SVZ including specialized parench…

TranscriptomeCell typemedicine.anatomical_structurenervous systemCluster of differentiationNeurogenesismedicineSubventricular zoneProgenitor cellBiologyNeural stem cellProgenitorCell biology
researchProduct

Persistent inflammation alters the function of the endogenous brain stem cell compartment

2008

Endogenous neural stem/precursor cells (NPCs) are considered a functional reservoir for promoting tissue homeostasis and repair after injury, therefore regenerative strategies that mobilize these cells have recently been proposed. Despite evidence of increased neurogenesis upon acute inflammatory insults (e.g. ischaemic stroke), the plasticity of the endogenous brain stem cell compartment in chronic CNS inflammatory disorders remains poorly characterized. Here we show that persistent brain inflammation, induced by immune cells targeting myelin, extensively alters the proliferative and migratory properties of subventricular zone (SVZ)-resident NPCs in vivo leading to significant accumulation…

Encephalomyelitis Autoimmune Experimentalexperimental autoimmune encephalomyelitisSubventricular zoneInflammationBiologymultiple sclerosisMice03 medical and health sciences0302 clinical medicineNeuroblastCell MovementPrecursor cellischemic strokemedicineAnimalsCells CulturedTissue homeostasisCell Proliferationneural stem cells030304 developmental biology0303 health sciencesStem CellsCell CycleNeurogenesisOriginal Articlesbrain cell stemNeural stem cellClone CellsNerve RegenerationMice Inbred C57BLMicroscopy Electronneurogenesismedicine.anatomical_structureinflammationChronic DiseaseModels AnimalCytokinesFemaleNeurology (clinical)Stem cellmedicine.symptomNeuroscience030217 neurology & neurosurgeryBrain StemBrain
researchProduct

Neurovascular EGFL7 regulates adult neurogenesis in the subventricular zone and thereby affects olfactory perception

2016

Adult neural stem cells reside in a specialized niche in the subventricular zone (SVZ). Throughout life they give rise to adult-born neurons in the olfactory bulb (OB), thus contributing to neural plasticity and pattern discrimination. Here, we show that the neurovascular protein EGFL7 is secreted by endothelial cells and neural stem cells (NSCs) of the SVZ to shape the vascular stem-cell niche. Loss of EGFL7 causes an accumulation of activated NSCs, which display enhanced activity and re-entry into the cell cycle. EGFL7 pushes activated NSCs towards quiescence and neuronal progeny towards differentiation. This is achieved by promoting Dll4-induced Notch signalling at the blood vessel-stem …

Male0301 basic medicineGeneral Physics and AstronomyNEURAL STEM-CELLSMOUSEMiceSUBEPENDYMAL ZONENeural Stem CellsLateral VentriclesLINEAGE PROGRESSIONBRAININ-VIVOMice KnockoutNeuronal PlasticityMultidisciplinaryCell CycleQNeurogenesisNICHEAnatomyNeural stem cellCell biologyAdult Stem Cellsmedicine.anatomical_structureSignal TransductionSTIMULATES NEUROGENESISEGF Family of ProteinsNeurogenesisScienceNotch signaling pathwaySubventricular zoneBiologyInhibitory postsynaptic potentialArticleGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesNeuroplasticitymedicineBiological neural networkAnimalsCalcium-Binding ProteinsProteinsGeneral ChemistryOlfactory PerceptionENDOTHELIAL-CELLSnervous system diseasesOlfactory bulbMice Inbred C57BLSELF-RENEWAL030104 developmental biologynervous system
researchProduct

The Role of SVZ Stem Cells in Glioblastoma

2019

As most common primary brain cancer, glioblastoma is also the most aggressive and malignant form of cancer in the adult central nervous system. Glioblastomas are genetic and transcriptional heterogeneous tumors, which in spite of intensive research are poorly understood. Over the years conventional therapies failed to affect a cure, resulting in low survival rates of affected patients. To improve the clinical outcome, an important approach is to identify the cells of origin. One potential source for these are neural stem cells (NSCs) located in the subventricular zone, which is one of two niches in the adult nervous system where NSCs with the capacity of self-renewal and proliferation resid…

0301 basic medicineNervous systemCancer ResearchSubventricular zoneReviewBiologylcsh:RC254-282brain tumor stem cells03 medical and health sciences0302 clinical medicineCancer stem cellmedicineProgenitor cellneural stem cellstherapyNeurogenesisglioblastomasubventricular zoneCancerlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.diseaseNeural stem cellnervous system diseasesneurogenesis030104 developmental biologymedicine.anatomical_structurenervous systemOncology030220 oncology & carcinogenesisCancer researchStem cellCancers
researchProduct

Neural Stem Cell Regulation by Adhesion Molecules Within the Subependymal Niche

2019

In the mammalian adult brain, neural stem cells persist in neurogenic niches. The subependymal zone is the most prolific neurogenic niche in adult rodents, where residing stem cells generate large numbers of immature neurons that migrate into the olfactory bulb, where they differentiate into different types of interneurons. Subependymal neural stem cells derive from embryonic radial glia and retain some of their features like apico-basal polarity, with apical processes piercing the ependymal layer, and a basal process contacting blood vessels, constituting an epithelial niche. Conservation of the cytoarchitecture of the niche is of crucial importance for the maintenance of stem cells and fo…

0301 basic medicineMini Reviewextracellular matrixNicheBiologyQuiescenceAdult neurogenesis03 medical and health sciencesCell and Developmental Biologyneural stem cell0302 clinical medicineSubependymal zoneNicheSubependymal zoneadhesion moleculesquiescencelcsh:QH301-705.5Ecological nicheNeurogenesisCell BiologyExtracellular matrixEmbryonic stem cellNeural stem cellCell biologyOlfactory bulbadult neurogenesisniche030104 developmental biologylcsh:Biology (General)Neural stem cell030220 oncology & carcinogenesissubependymal zoneStem cellAdhesion moleculesDevelopmental BiologyFrontiers in Cell and Developmental Biology
researchProduct

Neural stem cells in the adult olfactory bulb core generate mature neurons in vivo.

2021

17 páginas, 7 figuras.

0301 basic medicineNeurobiologia del desenvolupamentRostral migratory streamNeurogenesisSubventricular zoneStem cellsAdult neurogenesis03 medical and health sciencesMiceOlfactory bulb0302 clinical medicineCalretininNeural Stem CellsInterneuronsmedicineAnimalsDevelopmental neurobiologyNeural stem cellsNeuronsbiologyNeurogenesisCell DifferentiationCell BiologyOlfactory BulbNeural stem cellDoublecortinCell biologyOlfactory bulb030104 developmental biologymedicine.anatomical_structurenervous systemSynapsesbiology.proteinMolecular MedicineNeuronNeuNCèl·lules mare030217 neurology & neurosurgeryDevelopmental BiologyStem cells (Dayton, Ohio)REFERENCES
researchProduct

Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells

2009

Epigenetic mechanisms that maintain neurogenesis throughout adult life remain poorly understood(1). Trithorax group (trxG) and Polycomb group (PcG) gene products are part of an evolutionarily conserved chromatin remodelling system that activate or silence gene expression, respectively(2). Although PcG member Bmi1 has been shown to be required for postnatal neural stem cell self-renewal(3,4), the role of trxG genes remains unknown. Here we show that the trxG member Mll1 (mixed-lineage leukaemia 1) is required for neurogenesis in the mouse postnatal brain. Mll1-deficient subventricular zone neural stem cells survive, proliferate and efficiently differentiate into glial lineages; however, neur…

Chromatin ImmunoprecipitationEpigenetic regulation of neurogenesisCell SurvivalNeurogenesisCellular differentiationSubventricular zoneNerve Tissue ProteinsBiologyMethylationArticleHistonesMiceBasic Helix-Loop-Helix Transcription FactorsmedicineAnimalsCell LineageCells CulturedCell ProliferationGliogenesisHomeodomain ProteinsNeuronsMultidisciplinaryStem CellsNeurogenesisCell DifferentiationHistone-Lysine N-MethyltransferaseOligodendrocyte Transcription Factor 2Chromatin Assembly and DisassemblyOlfactory BulbMolecular biologyChromatinNeural stem cellCell biologyChromatinmedicine.anatomical_structureAnimals NewbornStem cellNeurogliaMyeloid-Lymphoid Leukemia ProteinTranscription Factors
researchProduct

Intraspinal stem cell transplantation for amyotrophic lateral sclerosis: Ready for efficacy clinical trials?

2016

Intraspinal stem cell (SC) transplantation represents a new therapeutic approach for amyotrophic lateral sclerosis (ALS) clinical trials. There are considerable difficulties in designing future efficacy trials, some related to the field of ALS and some that are specific to SCs or the mode of delivery. In October 2015, the most controversial points on SC transplantation were addressed during an international workshop intended to bring together international SC and ALS researchers in a public discussion on a topic for which expertise is limited. During the meeting, a discussion was started on the basic structure of the ideal clinical trial testing the efficacy and safety of SC transplantation…

0301 basic medicineCancer ResearchCell- and Tissue-Based Therapy0302 clinical medicinePublic discussionNeural Stem CellsImmunology and AllergyNeural Stem CellALS; clinical trials; stem cells; transplantation; Immunology and Allergy; Immunology; Oncology; Genetics (clinical); Cell Biology; Cancer Research; TransplantationAmyotrophic lateral sclerosisGenetics (clinical)clinical trialMiddle AgedOncologyStem cellSafetyHumanAdultmedicine.medical_specialtyConsensusAdolescentImmunologyConsensu03 medical and health sciencesTherapeutic approachYoung AdultClinical Trials Phase II as Topicstem cellsmedicineHumansIntensive care medicineAgedclinical trialsTransplantationbusiness.industryAmyotrophic Lateral SclerosisBIO/13 - BIOLOGIA APPLICATACell Biologymedicine.diseasestem cellClinical trialTransplantation030104 developmental biologyClinical Trials Phase III as TopicImmunologyALSbusiness030217 neurology & neurosurgeryAmyotrophic Lateral SclerosiStem Cell TransplantationCytotherapy
researchProduct

TOX3 regulates neural progenitor identity

2016

The human genomic locus for the transcription factor TOX3 has been implicated in susceptibility to restless legs syndrome and breast cancer in genome-wide association studies, but the physiological role of TOX3 remains largely unknown. We found Tox3 to be predominantly expressed in the developing mouse brain with a peak at embryonic day E14 where it co-localizes with the neural stem and progenitor markers Nestin and Sox2 in radial glia of the ventricular zone and intermediate progenitors of the subventricular zone. Tox3 is also expressed in neural progenitor cells obtained from the ganglionic eminence of E15 mice that express Nestin, and it specifically binds the Nestin promoter in chromati…

0301 basic medicineNeurogenesisBiophysicsNotch signaling pathwaySubventricular zoneMice TransgenicBiologyBiochemistryMice03 medical and health sciences0302 clinical medicineNeural Stem CellsSOX2PregnancyStructural BiologyGeneticsmedicineAnimalsRNA Small InterferingProgenitor cellMolecular BiologyCells Culturedreproductive and urinary physiologyNeuronsNeurogenesisGene Expression Regulation DevelopmentalNestinEmbryo MammalianMolecular biologyNeural stem cellMice Inbred C57BL030104 developmental biologymedicine.anatomical_structurenervous systemembryonic structuresTrans-ActivatorsFemaleStem cellApoptosis Regulatory ProteinsReceptors Progesterone030217 neurology & neurosurgeryBiochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
researchProduct

p73 deficiency results in impaired self renewal and premature neuronal differentiation of mouse neural progenitors independently of p53

2010

10 p.-5 fig.

p53Cancer ResearchGenotypeCellular differentiationImmunologyPopulationp73RegulatorBiologyCellular and Molecular NeuroscienceMiceNeurosphereAnimalsProgenitor celleducationCell ProliferationNeuronsNeural stem cellseducation.field_of_studyCell growthTumor Suppressor ProteinsNuclear ProteinsCell DifferentiationNeurodegenerative DiseasesTumor Protein p73Cell BiologyEmbryonic stem cellasymmetric divisionNeural stem cellCell biologyDNA-Binding ProteinsDifferentiationSelf-renewalOriginal ArticleTumor Suppressor Protein p53
researchProduct